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A B S T R A C T

Ensemble-based probabilistic forecasting of storm surge is increasingly being used to provide metrics for
emergency management decisions such as the near-worst case scenario. The Stevens Flood Advisory System
is an ensemble prediction system used to forecast total water levels over a broad coastal region and street-
scale flood levels for several New York Harbor (NYH) critical infrastructure sites. As a part of our continuous
assessment of this system’s performance, we evaluate its prediction of storm tide and resurgence during Tropical
Cyclone Isaias (2020), which tracked northward along the Pennsylvania/New Jersey border and caused the
largest storm surge in NYH since Hurricane Sandy. Isaias specific track and speed generated an unusual flood
event consisting of a storm surge, a blowout, then a significant resurgence that caused minor flooding. The
analysis shows that the super-ensemble spread provided an equal or better estimate of uncertainties than
sub-ensembles based only on any single meteorological forcing system. Because of ensemble averaging, the
central forecast under-predicted peak water levels and the resurgence peak though these were predicted by
some of the ensemble members. The impacts of errors in forecast storm arrival time and resolution-related
biases in coarse global atmospheric models on the predictions are noted. A limited comparison for this
single storm with the National Hurricane Center’s forecast show SFAS providing better accuracy and spread.
Advantages and challenges of SFAS and other similar mid-latitude flood forecast systems are identified along
with recommendations for analysis and improvement.
1. Introduction

Ensemble-based probabilistic forecasting of storm surge based on a
cluster of ‘‘member’’ forecasts generated from perturbed meteorological
forcing conditions and/or different forecasting models are, in general,
expected to cover uncertainties associated with deterministic forecasts
that are based on a specific forecast model and a single set of forcing
conditions. Probabilistic forecasts are particularly useful for events with
higher uncertainties, such as Tropical Cyclones (TCs) where a small
change in the storm speed or direction can lead to large variations in
storm surge over a broad coastal region (Ayyad et al., 2021). This is
even more true for areas like the US Northeast where moderate-to-large
tide ranges significantly impact total water levels (Georgas et al., 2014;
Colle et al., 2015). Uncertainties generated from ensemble forecasts
may be used to address risk thresholds based on specific criteria. For
instance, evacuation decisions, management of port operations, and/or
deployment of flood gates or barriers can be set based on the 90th
percentile event (10% chance exceedance) rather than on a single
prediction from a central forecast.

Ensemble-based prediction has substantially advanced coastal flood
forecasting and early warning systems in mid-latitude and TC flood
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forecast systems. Mid-latitude forecast systems are developed for Extra-
Tropical Cyclones (ETC) using regional or global meteorological forc-
ing. TC coastal flood forecast systems operate only during TC conditions
and use storm-following atmospheric model-based forcing that has
sufficient resolution to capture small-scale variations such as hurricane
eye walls. Fitting the latter category is the Probabilistic Hurricane
Storm Surge (P-Surge) (Taylor and Glahn, 2008) developed by the
National Oceanic and Atmospheric Administration (NOAA). P-Surge is
based on the SLOSH (Sea, Lake, and Overland Surges from Hurricanes)
model (Jelesnianski, 1992) and uses data from the National Hurricane
Center (NHC)’s official advisory to create a set of synthetic storms
by perturbing the storm’s position, size, and intensity based on past
errors of the advisories (Taylor and Glahn, 2008; Gonzalez and Taylor,
2021). P-Surge computes the probable storm surge 102 h in advance.
It provides the hourly maximum water level at 10 percentile, and 50
to 90 percentiles with 10% interval. P-Surge generated a good forecast
spread and accuracy of storm surge for Hurricane Sandy (Forbes et al.,
2014).

In the mid-latitude category, the UK Meteorological Office has
been running an ensemble-based forecasting system for coastal water
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levels since 2006 that was made operational in 2009 (Flowerdew
et al., 2010). Its lead time was initially 54 h and later extended to
124 h (Flowerdew et al., 2013). The European Center for Medium-
Range Weather Forecasts (ECMWF-ENS) (Molteni et al., 1996) is used
for meteorological forcing. The Dutch Meteorological Institute devel-
oped a 48-hour ensemble-based forecasting system for water levels
along the Dutch coast (de Vries, 2009) also based on ECMWF-ENS. The
Meteorological Development Laboratory (MDL) developed the Extra-
Tropical Storm Surge (ETSS) forecast system based on SLOSH with
some modifications using the Global Forecast System (GFS) wind and
pressure input (Kim et al., 1996). In 2017, MDL implemented the
Probabilistic Extra-Tropical Storm Surge (P-ETSS) forecast system (Liu
et al., 2018) using ensemble forcing from the Global Ensemble Forecast
System (GEFS). In 2019, P-ETSS started to utilize ensemble members
from both GEFS and Canadian Meteorological Center (CMC), calling
this combination of ensembles the North American Ensemble Forecast
System (NAEFS) (Liu et al., 2019).

This paper focuses on the Stevens Flood Advisory System (SFAS,
http://stevens.edu/SFAS), an ensemble-based forecasting system devel-
oped at the Stevens Institute of Technology. SFAS is the evolution of the
publicly-available coastal ocean forecasting system initiated in 2007
with the New York Harbor Observing and Prediction System (Geor-
gas and Blumberg, 2010; Orton et al., 2012; Georgas et al., 2014).
The system models rainfall-driven hydrology, tide, and storm surge to
predict total water levels (Georgas et al., 2016; Jordi et al., 2019).
The ‘‘super-ensemble’’ forecasts have been running since late 2015 and
are presently forced by a combination of ensemble and deterministic
weather forecast products; namely GFS, GEFS, ECMWF-ENS, ECMWF-
HRES (high-resolution), North American Mesoscale forecast system
(NAM), and CMC. The CMC product is called the Canadian Global
Ensemble Prediction System (GEPS). SFAS provides the 90% confidence
intervals and central estimate time series of water level for the up-
coming 108 h. The National Weather Service local weather forecast
offices in Upton (New York) and Mt. Holly (NJ/Eastern Pennsylvania),
and two other offices have been using SFAS’ 5th–50th–95th percentile
time series data alongside NOAA’s forecast products year-round to
develop their forecast guidance. The system’s output is also used to set
the boundary conditions for Stevens Institute’s local two-dimensional
street-scale flood modeling and mapping for localized domains around
transportation and port facilities of the New York City metro area (Jordi
et al., 2019).

Building on prior assessments of the deterministic forecast sys-
tem (Georgas and Blumberg, 2010), Georgas et al. (2016) assessed
SFAS ensemble-based central forecast performance for winter-season
forecasts. Saleh et al. (2016) and Jordi et al. (2019) demonstrated
through retrospective ensemble forecasts of TCs Irene and Sandy, re-
spectively, that SFAS is capable to predict impact of extreme hydrologic
events and flood forecasting at street scale. Saleh et al. (2016) showed
that SFAS improved predictions of river discharge forecasts due to
extreme hydrologic events. Jordi et al. (2019) determined that the 95th
percentile flood forecast at street scale for Sandy was in good agreement
with observations three days before the peak in flood level, while the
50th percentile was negatively biased because of the low resolution of
the meteorological forcing.

As a part of the continuous assessment of SFAS’ capabilities, there
is a need to evaluate forecasts of challenging unusual coastal flood
events. An annual ensemble water level forecast assessment is available
for the years 2020 and 2021 (Orton et al., 2021) available at http:
//stevens.edu/SFAS, and tropical storm Isaias (2020) stood out to be
the most challenging event in those two years. TC Isaias affected the
region on August 4th, 2020. This TC brought the largest storm surge of
1.37 m at the Battery tide gauge since Hurricane Sandy in 2012, and as
large as 1.83 m in the Hackensack River. Furthermore, Isaias caused a
rapidly undulating positive surge, a blowout with negative surge, then a
second positive surge or resurgence. This resurgence caused peak water
2

levels and flooding in certain areas of New York Harbor (NYH). We h
propose the term ‘‘resurgence’’ to refer more broadly to any secondary
surge occurring after a storm and its peak surge pass and winds cease to
support local wind setup. These secondary surges have been observed
in NYH region after hurricane landfalls on Long Island. One example is
the 1938 Long Island Express, which resulted in a peak surge of 0.94 m,
followed by a resurgence of 0.56 m six hours later at the Battery.

Here, we evaluate the ability of SFAS to predict storm tide and
resurgence, and we assess the benefits of the SFAS super-ensemble
versus individual sub-ensembles in case of Isaias. Given that Isaias was
a TC, we also compare SFAS and P-Surge forecasts. The assessment
focuses on four locations that represent different sub-basins of NYH,
namely Battery, Jamaica Bay at Inwood, Kings Point in NY and Hack-
ensack River in NJ. The paper proceeds with a description of SFAS,
ensemble processing, and performance evaluation metrics in Section 2.
A summary of Isaias track and its effect is presented in Section 3.
Evaluation of predicted surge levels by the super- and sub-ensembles
against observation data is performed in Section 4. The causes of
observed phenomena and associated modeling challenges are discussed
in Section 5. Conclusions are drawn in Section 6.

2. Methods

2.1. Stevens flood advisory system (SFAS)

Coupled coastal-hydrologic total water level modeling
SFAS is a fully automated operational Hydrologic-Coastal Ensem-

ble Prediction System that forecasts water levels across the US Mid-
Atlantic and Northeast coastline. The hydrodynamic simulations are
conducted using the Stevens Institute Estuarine and Coastal Ocean
Model (sECOM) (Georgas and Blumberg, 2010; Orton et al., 2012;
Georgas et al., 2016), which is a free-surface hydrostatic model with
terrain-following (sigma) vertical coordinates and an orthogonal curvi-
linear Arakawa C-grid. For the central forecast region of New York
Bight (NYB), the simulations are performed using a nested application.
The New York Harbor Observing and Prediction System (NYHOPS)
applies sECOM in a three-dimensional configuration on a domain that
spans the continental shelf and several estuaries. Boundary conditions
are applied to the NYHOPS domain at its offshore boundary (OBCs) and
its interface with hydrologic models. The OBCs include the superposi-
tion of time series of tides from the ADCIRC East Coast tide constituent
database (Szpilka et al., 2016) and storm surge modeled on the Stevens
Northwest Atlantic Prediction (SNAP) domain (Georgas and Blumberg,
2010).

Two US Army Corps of Engineers (USACE) models, the Hydro-
logic Engineering Center’s Hydrologic Modeling System (HEC-HMS)
and River Analysis System (HEC-RAS) are used for hydrologic modeling
of precipitation-runoff processes for NY and northern NJ major and
moderate-sized rivers and for dendritic watershed from area-scaled
neighboring rivers, respectively (Georgas et al., 2016). NYHOPS also
uses the forecast stream flows in other parts of the domain from the
United Stated Geological Survey (USGS), National Weather Service
Advanced Hydrologic Prediction Service, and Stevens-operated coastal
sensors (Georgas et al., 2016).

SFAS uses an ensemble forecasting approach by running sECOM
simulations for 96 different atmospheric forcing datasets. The ensemble
meteorological forcing used in this study includes 21 members of GEFS
with three hours temporal resolution and 0.5◦ spatial resolution, one

ember of GFS with three hours temporal resolution and 0.25◦ spatial
esolution, one member of NAM with three hours temporal resolution
nd 0.1◦ spatial resolution, 21 members of CMC with six hours temporal
esolution and 0.5◦ spatial resolution, 51 members of ECMWF-ENS
ith three hours temporal resolution and 0.25◦ spatial resolution, and
ne ECMWF-HRES with three hours temporal resolution and 0.125◦

patial resolution. The meteorological data are spatially and temporally
nterpolated using bicubic and cubic splines, respectively, to create

ourly forcing fields on each domain’s grid.

http://stevens.edu/SFAS
http://stevens.edu/SFAS
http://stevens.edu/SFAS
http://stevens.edu/SFAS
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SFAS provides public and private forecasts four times per day. At
every cycle, SFAS updates water levels for five and a half days. This
period is split into a hindcast day used for training purposes and a
forecast period over four and a half days determined from ensemble
processing methods as described below. The hydrologic and hydrody-
namic simulations, ensemble analyses, and website graphics require
approximately two hours to be processed. The time series of the 00:00,
06:00, 12:00 and 18:00 (UTC) forecasts for water level are posted on
the SFAS website at 02:00, 08:00, 14:00 and 20:00 (UTC). Additional
street-scale flood simulations and mapping are performed for the 5th,
50th, and 95th percentiles of temporal maxima.

Tide bias correction and ensemble processing methods
SFAS utilizes an innovative ‘‘tide bias correction’’ approach to im-

prove the forecast results. Using a multi-year period of prior data,
harmonic analysis is performed on every station’s raw simulation out-
put and observations. The difference in resulting tide time series is
the tide bias correction dataset, and may be applied to all future
forecasts (Georgas and Blumberg, 2010).

Different ensemble forecasting methods have been used in litera-
ture (Florescu and Tudor, 2013; Florescu, 2014; Raftery et al., 2005;
Gneiting et al., 2005; Georgas et al., 2016; Whan et al., 2021; Cho et al.,
2022). The adopted method in the SFAS is the model based on root
mean square error. The super-ensemble (NYHOPS-E/central) forecast,
𝜂𝑤, is the weighted mean of the 96 members given by

𝜂𝑤 =
96
∑

𝑗=1
𝑤(𝑗)𝜂(𝑗) (1)

where 𝑤(𝑗) is the normalized weight factor of member 𝑗. The weights
are calculated using the hindcast day. The normalized weight factor is
defined as

𝑤(𝑗) =
𝑓 (𝑗)

∑96
𝑗=1 𝑓 (𝑗)

(2)

Here, 𝑓 (𝑗) is the weight factor of every member. It is calculated using
the root mean square error (𝑅𝑀𝑆𝐸) given by (Georgas et al., 2016)

𝑅𝑀𝑆𝐸(𝑗) =

√

√

√

√

√

1
𝑁 (𝑗)

𝑁 (𝑗)
∑

𝑖=1

(

𝜂(𝑗)𝑚 𝑖 − 𝜂𝑜𝑖
)2

(3)

where 𝑁 (𝑗) is the number of time series data points per member 𝑗 in the
one day hindcast, and 𝜂𝑚 and 𝜂𝑜 are the modeled and observed water
levels, respectively. The weight factor is then calculated as

𝑓 (𝑗) = 1
(

|

|

𝜖(𝑗)|
|

+ 0.05
) (

𝑅𝑀𝑆𝐸(𝑗) + 0.05
) (4)

where 𝜖(𝑗) is the mean bias between the observation and hindcast levels
for the same period of time for every ensemble member. The small
value 0.05 is added in the denominator to avoid singularities.

The 90th percentile confidence interval is calculated by finding
the 5th and 95th percentiles empirically formed from all available
and equally weighted ensemble members. The range of the ensemble
accounts for atmospheric uncertainties across multiple ensembles, but
does not cover ocean modeling uncertainties. As a rough approximation
of the effect of additional ocean, wave and air–sea interaction uncer-
tainties, the weighted RMSE from the hindcast period is added to the
95th percentile and subtracted from the 5th percentile to broaden the
spread.

2.2. Performance metrics

Multiple metrics have been used in literature to assess the per-
formance of numerical models with respect to available observations.
Here, we adopt the Peak Relative Error (𝑃𝑅𝐸) defined as

𝑃𝑅𝐸 =
𝑚𝑎𝑥(𝜂𝑚) − 𝑚𝑎𝑥(𝜂𝑜) ∗ 100% (5)
3

𝑚𝑎𝑥(𝜂𝑜)
Fig. 1. Isaias track along the East Coast using three hours time period between
consecutive readings. The locations of the four stations considered in this study are
marked with green dots. All acronyms are defined in Section 2, except NYB is New
York Bight, and LIS is Long Island Sound. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

A negative (positive) 𝑃𝑅𝐸 means that the model is under- (over-)
estimating the water level while zero 𝑃𝑅𝐸 shows a perfect agreement
between simulation results and observations. We also use the Coverage
of Observation Uncertainties (𝐶𝑂𝑈) defined as

𝐶𝑂𝑈 = 𝑛
𝑁

∗ 100% (6)

where 𝑛 is the number of times the observed water levels fall within the
specified confidence interval, and 𝑁 is the total number of forecast time
periods. Because we consider a confidence interval of 90%, between the
5th and 95th percentiles, the 𝐶𝑂𝑈 should ideally be equal to 90%.

3. Isaias track and observations

Isaias made two landfalls along its path with the first in the Ba-
hamas on August 1st, 2020. As shown in Fig. 1, it then intensified to
reach hurricane strength while moving parallel to Florida’s coastline
before making its second landfall in North Carolina at 3:00 (UTC) on
August 4th. Afterwards, it weakened to a tropical storm as it tracked
northward west of NYH along the Pennsylvania/New Jersey border on
the afternoon of August 4th. As for its forward speed, it moved slowly
before making landfall on the North Carolina coast, then it accelerated
to a speed of 20 m s−1 as it passed by NYH. The rainfall gradually
tapered off as it moved across New York and New England (Latto et al.,
2021). The total rainfall in NYC was relatively low during the storm.
For example, the total rain at Laguardia airport was about 1.35 cm.
The performance assessment of SFAS, discussed in this paper, is based
on comparing the ensemble-based predictions to observations at four
coastal water level stations that are marked with green dots in the inset
map of Fig. 1.

Fig. 2 shows time series of the wind vectors in panel 𝑎 and of
the pressure in panel 𝑏 from NOAA’s buoy 44 065 in New York Bight
(NYB). Panel 𝑎 also shows the wind vectors from the University of
Connecticut’s buoy at Execution Rocks (NOAA buoy code 44 022) in
western Long Island Sound (LIS). The recorded maximum wind speeds
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Fig. 2. Time series between August 4th and August 5th, 2020 of recorded (a) wind vectors showing the wind speed (m s−1) and meteorological direction (clockwise from north)
by NOAA’s buoys offshore in NYB (44 065) and in LIS (44 022), (b) pressure (hPa) by NOAA’s buoy in NYB, (c) water levels (m), and (d) surge (m) at the four stations.
were respectively 25.4 and 18.6 m s−1 in NYB and LIS. Wind speeds
above 10 m s−1 were maintained for about eight hours, which is a
relatively short-duration event when compared with the most common
surge-producing storms in this region (Orton et al., 2016). The wind
speed, direction and pressure follow the movement of the hurricane. At
16:00 (UTC) on August 4th, the hurricane was located at lower latitudes
with respect to NYB. The wind blew from the southeast (116 degrees)
toward NYH and away from Long Island. The recorded pressure at
NOAA’s buoy offshore in NYB (44 065) was 1008 hPa and falling. Two
hours later, at 18:00 (UTC), the hurricane passed by NYB and the wind
blew with speeds of 22.8 and 18.6 m s−1 at NYB and LIS, respectively,
from the southeast (169 degrees). The pressure offshore in NYB (buoy
44 065) reached a minimum of 998 hPa. At 21:00 (UTC), the recorded
wind speeds at NYB and LIS were respectively 12.2 and 15.8 m s−1
and blew from the southwest (202 and 230 degrees). The pressure at
NOAA’s offshore buoy in NYB (44 065) had increased to 1008 hPa.

Fig. 2 also shows the observed water levels in panel 𝑐 and surge in
panel 𝑑 at the four stations. Two distinct storm surges occurred, one
the evening of August 4th (UTC) and the other around or soon after
00:00 (UTC) on August 5th. At the Battery, Jamaica Bay Inwood, and
Hackensack stations, the observed water level plots exhibit a double
peak on August 4th respectively at 17:50, 19:00, and 20:20 (UTC) with
surge heights of 1.37, 1.61, and 1.83 m, respectively. These double
peaks in the total water level occurred because the directly generated
surge happened as the tide was retreating. At Kings Point, the directly
generated surge occurred at the time of high tide on August 4th 17:30
(UTC) with a magnitude of 0.60 m, leading to a peak water level of
1.52 m. The directly generated surge at Kings Point was significantly
less than the other three stations as the wind speed at Kings Point was
relatively smaller than that at the other three stations and the wind
was blowing southeast, i.e. across, not along, LIS. After three and a
4

half hours, a negative surge (blowout) occurred with values ranging
between −1.0 and −0.6 m at Battery, Jamaica Bay and Hackensack. Four
hours later, a second surge, that we hereafter refer to as the resurgence,
of 0.34 m occurred at the Battery and was slightly larger at the other
two stations. The resurgence at the three stations coincided with the
high tide which caused the highest observed total water level of about
1.3 m. Minor flooding occurred during the resurgence early on August
5th in Jamaica Bay and nearby areas, evidenced by an exceedance of
National Weather Service ‘‘minor flood’’ datum at Inwood. On the other
hand, at Kings Point, a larger resurgence occurred with magnitude of
0.69 m at the time of low tide, causing a second, but smaller, peak in
total water level on August 5th 00:00 (UTC).

4. Performance analysis

4.1. SFAS online predictions

The online presentation of the SFAS forecast time series of water
levels before and after the passage of Isaias by NYH included contin-
uously updated time series such as the ones shown in Figs. 3(a) and
3(b). In Fig. 3(a), the time of the screen-capture is marked with the
vertical dashed line, about August 3rd 8:00 EDT (12:00 UTC). The
period to the left of August 3rd 2:00 EDT (6:00 UTC) is the hindcast,
while the period to the right of 2:00 is the forecast. In both figures,
the observation is marked by the red dots while the super-ensemble
forecast is marked by the magenta line. The hindcast time series in
Fig. 3(b) shows that the observations fall mostly within the forecast
90% confidence interval, marked by the gray shaded area. Although we
will show below that individual ensemble members exhibited double
peaks, the central forecast missed the double peak due to averaging.
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Fig. 3. SFAS online web displays of total water level forecast time series (a) prior to, and (b) after the passage of Isaias. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
4.2. Ensemble time series

Fig. 4 shows the observed and simulated time series of the water
levels from all ensemble members at the Battery station. The panels
from top to bottom show the simulated water levels between August
2nd and August 5th. Each panel shows four and half forecasting days
and one hindcast day with the initiation time in each figure set at 6:00
(UTC). As expected, the 96 meteorological forecasts yield a horizon-
tal spread in the water levels indicating a time shift, and a vertical
spread indicating variations in simulated water level values and peaks.
The largest spreads occur between the afternoon of August 4th and
the occurrence of the peak value right after 0:00 (UTC) on August
5th. A minority of ensemble members captured the peak water level
(or higher), yet many predicted the resurgence albeit slightly later
or earlier than the actual time of occurrence. Moreover, the double
peak of the directly generated surge that occurred during the tidal
retreat was captured by some of the ensemble members but not by
the super-ensemble forecast due to averaging. Also important is the
blowout, which was not captured by most of the ensemble members
or super-ensemble forecast.

Fig. 5 shows plots of the 𝐶𝑂𝑈 over different forecast times at the
four stations for sub-ensembles GEFS, CMC, and ECMWF-ENS and the
super-ensemble consisting of all of them. The plots show that the 𝐶𝑂𝑈
range of the super-ensemble is mostly between 70% and 90%. A better
overall assessment is based on the values in Table 1, which provides
average 𝐶𝑂𝑈 values for the 90% confidence interval at the four stations
and their mean values. Over time and across the four representative
stations, the 90% confidence interval forecasted by the super-ensemble
varied between 77 and 85% at the four stations, indicating reason-
able estimates of uncertainty by the super-ensemble. In contrast, the
forecasted 90% confidence intervals based on the sub-ensembles of
the GEFS, ECMWF-ENS and CMC forecasts were respectively 67, 65,
and 83%. On average, the CMC sub-ensemble yielded slightly better
𝐶𝑂𝑈 than the super-ensemble, while the super-ensemble outperformed
the GEFS and ECMWF-ENS sub-ensembles. It is stressed that although
one sub-ensemble may have yielded better predictions in terms of
𝐶𝑂𝑈 , considering all predictions supports using the super-ensemble.
Finally, it is noted that, on average, the super-ensemble and CMC-
based sub-ensemble were slightly under-dispersed, but worse under-
dispersion would have occurred if only the GEFS and/or ECMWF-ENS
sub-ensemble were considered. Furthermore, assessment of the en-
tire year’s storm events should provide more information about this
assessment (Orton et al., 2021).

Comparison of SFAS results with P-Surge and P-ETSS is possible
but these systems have 80% confidence interval. The average 𝐶𝑂𝑈
values of P-Surge model at the four stations are shown in Table 1.
The P-Surge COU values ranged between 23% to 40% with a mean
5

value of 30% compared with an ideal value of 80% for P-Surge.
Also, NOAA ensemble water level forecast system P-ETSS, that runs
only with NAEFS (GEFS and CMC) ensemble, showed 30 − 70% 𝐶𝑂𝑈
values for 2018–2019 storms, compared with an ideal value of 80% for
that system, which provides an 80% uncertainty range, revealing that
uncertainty estimates with that system were always too small in storm
events (Liu and Taylor, 2020).

Fig. 6 compares the maximum observed water levels at the four
stations with the time series of maximum predicted water levels and
95th percentiles from the super- and sub-ensembles. The maximum
water levels at the Battery, Jamaica Bay Inwood, and Hackensack
occurred at the time of resurgence, while that at Kings Point occurred
at the time of the directly generated surge. Based on these data, the
super-ensemble 𝑃𝑅𝐸 varied between −10 and −30% at Battery and
Jamaica Bay, between −5 to −15% at Kings Point and between 5 to
15% at Hackensack. The positive 𝑃𝑅𝐸 at Hackensack is likely due to
the fact that the model is gridded only in waterways and not onto
floodplains and, thus, only includes a converging channel in the Hack-
ensack River, neglecting culverts and other hydraulic or hydrologic
features that spread the floodwaters into the large surrounding area
(The Meadowlands). At Kings Point, the range of the 𝑃𝑅𝐸 is smaller
than that at the other stations as Kings Point has a different basin and is
located further away from the hurricane track. To compare, the 𝑃𝑅𝐸
of the P-Surge central forecast (ensemble median) varied from −16%
to −30% at Battery, −35% to −46% at Jamaica Bay, −25% to −46% at
Hackensack, and −5% to −20% at Kings Point.

5. Discussion

The range and 95th percentile of the SFAS super-ensemble forecast
provided ample warning of peak water levels during Isaias. Yet, the
ensemble members and central forecasts were inaccurate on exact
timing and amplitude of the peak (Figs. 3, and 6). Here, we look more
closely at the uncommon storm surge, blowout and resurgence that
occurred, and seek to explain the causes of these phenomena. We then
assess likely sources of central forecast error. Lastly, we suggest some
future improvements to be considered for mid-latitude ensemble flood
forecast systems.

5.1. Directly generated surge, blowout and resurgence

One critical observation and topic for further analysis is how the
peak water levels and flooding during Isaias were a consequence of
a resurgence in storm surge. Isaias caused a directly generated surge,
followed by a blowout and a resurgence. This sequence is not uncom-
mon but, to the authors’ knowledge, has never been reported to cause
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Fig. 4. The water level time series at the Battery station for all the ensemble members. Every plot shows the time series starting from a different date as shown in the captions.
The day before these dates is always a hindcast while the following four and a half days are forecast.
Table 1
The average 𝐶𝑂𝑈 values for the mentioned confidence interval at the four stations and their mean values for SFAS and P-Surge (using advisories
21 to 29) forecasted water levels.

Ensemble name Confidence interval (%) The battery Hackensack river Jamaica Bay Inwood Kings point Mean COU (%)

Super-ensemble 90 77.5 85.3 78.3 78.3 79.9
GEFS 90 64.8 83.6 61.1 59.4 67.2
CMC 90 80.1 82.3 78.6 89.6 82.7
NAEFS (GEFS and CMC) 90 72.5 83 69.8 74.5 75
ECMWF-ENS 90 60.3 76.5 64.9 58.3 65
P-Surge 80 31.3 23.2 25.3 39.4 29.8
flooding or peak water levels for a storm. For instance, resurgences that
occurred in NYH after the Long Island Express in 1938 and Gloria in
1985 did not cause flooding. The resurgences of these two storms at
the Battery were respectively 58% and 14% of the peak surges with
magnitudes of 0.55 and 0.29 m, respectively. Yet, resurgences can cause
additional flooding or other water-speed related hazards (e.g. erosion),
especially if they coincide with high tide or high water velocities.

There are multiple possible mechanisms for a resurgence, including
coastal trapped waves. For example, barotropic continental shelf waves
and Kelvin waves can be formed when storms move across or along a
6

mid-latitude continental shelf (e.g. Mysak and LeBlond (1978), Tang
et al. (1998) and Thiebaut and Vennell (2010)). Sea level oscillations
after Hurricane Sandy’s passage were interpreted as being continental
shelf waves, and observed to propagate from Long Island to the apex
of New York Bight and down-coast to Atlantic City at 6.5 m s−1 (Chen
et al., 2014). However, examination of tide gauge data at sites to the
east along the Long Island coast and to the south along the New Jersey
coast does not reveal a propagating wave traveling counter-clockwise
around NY Bight. Therefore, we see no evidence of a coastal trapped
wave in the case of Isaias.
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Fig. 5. The 𝐶𝑂𝑈 for the 90th percentile confidence interval for the four stations, assessed using observed data between 8AM on August 4th and 5AM on August 5th, represented
by the two vertical dashed lines.

Fig. 6. Comparison of observed (red lines) and forecast storm-maximum water levels (points) and 95th percentiles (dashed curves). The storm period is bordered with Vertical
dashed lines and the times of the observed maxima are marked with vertical dash–dot lines. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 7 shows the observed and modeled wind vector time series at
buoy 44 065. We interpret the directly generated surge, blowout, and
resurgence as a five-step process where storm surge at NYH has about
an hour lag behind changes in NYB winds, roughly consistent with
storm surge traveling as a shallow-water wave (e.g. Orton et al. (2012)):

1. Wind-driven setup: At buoy 44 065 (see Fig. 7 red vectors), the
SSE wind blew with increasing intensity toward the Apex of NYB
causing a rising wind-generated surge (setup) at NYH. SSE winds
in NYB are conducive to storm surge in NYH (Lin et al., 2010;
Gurumurthy et al., 2019).

2. Relaxation of setup: On August 4th, between 18:00 and 19:30
UTC, the wind stress forcing of wind setup at the apex of NY
Bight ended as the winds turned from SSE to SSW, Fig. 7.

3. Wind-driven setdown: Consequently, a blowout (setdown) SSW
wind forcing at 22 m s−1 was initiated. These SSW winds
have an offshore component along the NJ coast. SSW winds
in NYB are conducive to blowout in NYH which is amplified
due to inverse funneling (see below) Gurumurthy et al. (2019).
SW winds along LIS (not shown) were also conducive to NYH
blowout.

4. Relaxation of setdown: Wind at buoys 44 065 and 44 022
decreased below 15 m s−1 at 20:30 UTC causing a modest
relaxation of the blowout forcing.

5. Subsequent pressure gradient forcing: Water levels were par-
ticularly low in the harbor relative to offshore due to the inverse
funneling, and as the blowout-producing winds relaxed, the sea
level gradient led to the resurgence of water back into the
harbor.

The sea-level see-saw response (surge-blowout-resurgence) is partic-
ularly important at NYH due to the concave coastline at the apex of NY
Bight. The consecutive processes of surge and blowout described above
were aided by the coastline shape, which can amplify both positive and
negative surges through the coastal funneling effect (Gurumurthy et al.,
2019; Mayo and Lin, 2022).

5.2. Sources of forecast error

Sources of central forecast error likely include storm forecast er-
ror (e.g. storm track, timing or intensity), inadequate meteorological
product resolution, ocean model error, and ensemble averaging. The
latter contributes to a tendency toward underestimating the peak water
levels (e.g. the −10 to −30% 𝑃𝑅𝐸 for Battery), as noted in Section 4.1
in reference to Fig. 4. Ensemble averaging is a challenge for captur-
ing peaks in storm tide time series forecast but avoided in forecast
systems that only provide statistics for water level temporal maxima
(e.g. P-Surge). Quantifying any ocean model error would require more
research, ideally using an extremely accurate meteorological reanalysis
to minimize meteorological forcing errors.

Meteorological forcing provided two sources of error, through storm
forecast timing and resolution bias. The wind vector time series (Fig. 7)
show major timing errors that were present in many ensemble mem-
bers’ forecasts including that released early on August 4th (e.g. GEFS,
NAM, ECMWF-ENS). These errors in timing generally resulted from
inaccurate storm track forecast, with many weather model members
wrongly forecasting that the TC would pass the region later than the
actual time. This led to most members inaccurately predicting the
timing of the storm surge as shown in Fig. 4. Also, resolution bias,
arising from over-smoothing of the winds during a storm’s passage,
can lead to underestimation of storm surge (e.g., Jordi et al., 2019;
Bloemendaal et al., 2019). This problem is increasingly obvious in
Fig. 7 with the members organized in order (top to bottom) of finest
to coarsest resolution. Members toward the bottom of the figure cannot
capture the finer temporal variations of wind velocity in either forecast
8

(August 4th) or hindcast (August 5th).
Resolution bias may also explain the discrepancies in forecasting
the resurgence occurred as a response to the sequence of surge-then-
blowout of water from the coast, as posited above. Due to the coarse
meteorological forcing resolution, winds near the coast are a blurred
interpolation between offshore (low surface drag) grid cells over water
and inland grid cells (higher drag), whereas real-world winds likely
have a more abrupt transition at or near the coastline. This can be seen
in Fig. 7 where none of the meteorological products captures the same
amplitude of variation in the east–west component of wind (from a SSE
to SSW wind) that occurred from August 4th 15:00 to 21:00 (UTC) and
some have no west wind component (e.g. CMC).

5.3. Advantages and challenges of mid-latitude flood forecast systems

Mid-latitude ensemble coastal flood forecast systems like SFAS and
P-ETSS typically utilize global or regional meteorological products and
run year-round. As described in Section 1, these systems are different
in many ways from National Hurricane Center P-Surge forecasts that
produce forecasts only for TCs and use parametric TC meteorological
forcing. Some advantages of the mid-latitude forecast systems include:

• Forecasting for ETC events, which are responsible for a majority
of the top-5 ranked storm surge events across most of the US
Mid-Atlantic and Northeast regions (Booth et al., 2016).

• Year-round consistent flood forecast products for events ranging
from tidal floods to extreme events.

• TCs in mid-latitudes often become large and elongated in shape
as they undergo transition to ETC status (Hart and Evans, 2001;
Colle, 2003), leading to ambiguity in which meteorological forc-
ing will be most accurate (realistic gridded or parametric circular
TC (Taylor and Glahn, 2008; Gonzalez and Taylor, 2021)).

Mid-latitude regions generally have smaller and less frequent trop-
ical cyclone-driven storm surge events than the lower latitudes, and
it is of greater value to incorporate processes other than storm surge
in coastal flood forecasting. The three-dimensional SFAS modeling
integrates tides, river flows, and storm surge, and therefore leads to
a more accurate forecast of water levels (Orton et al., 2012). For
example, SFAS’ predicted water level shows better 𝐶𝑂𝑈 , and 𝑃𝑅𝐸
values more than that of the tropical cyclone P-Surge forecast system
model for this event. However, a comprehensive comparison would
require a large number of TC forecasts, which were not available at the
time of publication. P-Surge only models storm surge and sums it with
deterministic tide prediction (Taylor and Glahn, 2008; Gonzalez and
Taylor, 2021). In areas with large tides relative to storm surge, such as
NYB, LIS and the Gulf of Maine, this simplification leads to neglect of
tide–surge interaction and associated forecast uncertainty. Moreover,
tropical cyclone forecast models (e.g., P-ETSS, P-Surge) continue to
be limited to two-dimensional modeling without stream flows nor
dynamic combined modeling of tides and surges. Also, forecast systems
that poorly resolve river systems (e.g. Hackensack) or neglect strong
tide–surge interactions (e.g. Jamaica Bay, Kings Point) will perform
more poorly on tidal or streamflow-driven events than SFAS, which
explicitly accounts for these processes (Orton et al., 2012). Yet, TC
forecast systems have the advantage for fast or small storms of having
extremely high resolution wind and pressure forcing, whereas mid-
latitude systems are limited to the available meteorological ensemble
forecast products that have coarser resolution.

6. Conclusions

The SFAS ensemble prediction system for coastal total water level
in the New York metropolitan area has been operating continuously for
six years with a growing user base including National Weather Service
Weather Forecast Offices. Evaluation of its forecasts is conducted on
a continuous basis with an eye toward improving its performance.

Tropical Cyclone Isaias was one of the most challenging water level
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Fig. 7. Wind vectors for buoy 44 065 in New York Bight, with observations in red and forecasts in black. The wind speed is in m s−1. The weather models are sorted with the
finest resolution at the top panels to the coarsest at the bottom panels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
forecasts in recent years. It caused a rapidly-developing and undulating
surge consisting of a positive surge, a blowout with negative surge,
and a resurgence that resulted in peak water levels and flooding in
certain areas of New York Harbor. In this study, we showed that SFAS
outperformed the National Hurricane’s Center forecast with respect to
spread and accuracy. However, a comprehensive comparison should be
conducted with other TC forecasts, which were not available at the time
of publication.

Our evaluation of the accuracy and ensemble spread of SFAS super-
and sub-ensemble forecasts shows that the range and 95th percentile
of the super-ensemble forecast provided ample warning of peak water
levels. However, while some ensemble members predicted the resur-
gence peak and its timing satisfactorily, the super-ensemble forecasts
were not as accurate on the exact timing and amplitude of the peak.
This arose because of inaccurate timing of the storm forecasts, ensem-
ble averaging, and coarse-resolution atmospheric forcing. Considering
wind and tide data, we determined that the resurgence traveled as a
shallow-water wave rather than a coastal trapped wave. The presented
analysis suggests that more accurate and higher-resolution meteorolog-
ical forcing can help reduce biases in forecasting storm surge, especially
those associated with tropical cyclones and challenging sequences of
events as in the case of Isaias.
9
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